Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata.
نویسندگان
چکیده
Severe suppression of 4-coumarate-coenzyme A ligase (4CL) in the coniferous gymnosperm Pinus radiata substantially affected plant phenotype and resulted in dwarfed plants with a "bonsai tree-like" appearance. Microscopic analyses of stem sections from 2-year-old plants revealed substantial morphological changes in both wood and bark tissues. This included the formation of weakly lignified tracheids that displayed signs of collapse and the development of circumferential bands of axial parenchyma. Acetyl bromide-soluble lignin assays and proton nuclear magnetic resonance studies revealed lignin reductions of 36% to 50% in the most severely affected transgenic plants. Two-dimensional nuclear magnetic resonance and pyrolysis-gas chromatography-mass spectrometry studies indicated that lignin reductions were mainly due to depletion of guaiacyl but not p-hydroxyphenyl lignin. 4CL silencing also caused modifications in the lignin interunit linkage distribution, including elevated beta-aryl ether (beta-O-4 unit) and spirodienone (beta-1) levels, accompanied by lower phenylcoumaran (beta-5), resinol (beta-beta), and dibenzodioxocin (5-5/beta-O-4) levels. A sharp depletion in the level of saturated (dihydroconiferyl alcohol) end groups was also observed. Severe suppression of 4CL also affected carbohydrate metabolism. Most obvious was an up to approximately 2-fold increase in galactose content in wood from transgenic plants due to increased compression wood formation. The molecular, anatomical, and analytical data verified that the isolated 4CL clone is associated with lignin biosynthesis and illustrated that 4CL silencing leads to complex, often surprising, physiological and morphological changes in P. radiata.
منابع مشابه
Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata.
The enzyme hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (HCT) is involved in the production of methoxylated monolignols that are precursors to guaiacyl and syringyl lignin in angiosperm species. We identified and cloned a putative HCT gene from Pinus radiata, a coniferous gymnosperm that does not produce syringyl lignin. This gene was up-regulated during tracheary element (TE) for...
متن کاملExpression of 4 Genes in Ocimum basilicum and their Relationship with Phenylpropanoids Content
Recent data showed that phenylpropanoid compound, methylchavicol is essential component of Iranian cultivars of basil. Studying their occurrence during development of plant may help to elucidate the role of phenylpropanoids in plant cell physiology. We followed the phenylpropanoids concentration and the expression of genes related to their biosynthesis during growth and development of two culti...
متن کاملGenome‐wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata
We present genome-wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion comb...
متن کاملmRNA sequencing of Eucalyptus urograndis trees supplemented with flavonoids shows changes on metabolic process and decrease of lignification
Background The flavonoids, naringenin-chalcone and narigenin, are intermediates in phenylpropanoid metabolism in plants, occupying the central position as primary intermediates in flavonoid biosynthesis and are synthesized by chalcone synthase (CHS) and chalcone isomerase (CHI) respectively.[1] It has been reported that supplementation of narigenin-chalcone and narigenin can inhibit the activit...
متن کاملPositive selection drives adaptive diversification of the 4-coumarate: CoA ligase (4CL) gene in angiosperms
Lignin and flavonoids play a vital role in the adaption of plants to a terrestrial environment. 4-Coumarate: coenzyme A ligase (4CL) is a key enzyme of general phenylpropanoid metabolism which provides the precursors for both lignin and flavonoids biosynthesis. However, very little is known about how such essential enzymatic functions evolve and diversify. Here, we analyze 4CL sequence variatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 149 1 شماره
صفحات -
تاریخ انتشار 2009